• Fullard, James H.
  • Ratcliffe, John M.
  • Christie, Christopher


Certain tiger moths (Arctiidae) defend themselves against bats by phonoresponding to their echolocation calls with trains of ultrasonic clicks. The dogbane tiger moth, Cycnia tenera, preferentially phonoresponds to the calls produced by attacking versus searching bats, suggesting that it either recognizes some acoustic feature of this phase of the bat's echolocation calls or that it simply reacts to their increased power as the bat closes. Here, we used a habituation/generalization paradigm to demonstrate that C. tenera responds neither to the shift in echolocation call frequencies nor to the change in pulse duration that is exhibited during the bat's attack phase unless these changes are accompanied by either an increase in duty cycle or a decrease in pulse period. To separate these features, we measured the moth's phonoresponse thresholds to pulsed stimuli with variable versus constant duty cycles and demonstrate that C. tenera is most sensitive to echolocation call periods expressed by an attacking bat. We suggest that, under natural conditions, C. tenera identifies an attacking bat by recognizing the pulse period of its echolocation calls but that this feature recognition is influenced by acoustic power and can be overridden by unnaturally intense sounds.


Eggs colled from the wild, reared in field and experimented on with acoustic stimulation